Physics Formulas

Physics Formulas

This document was created by the *Guide to IJSO* team — a student-led initiative dedicated to supporting Junior Science Olympiad aspirants around the world. It contains a carefully curated and organized collection of essential formulas commonly used in Physics, covering key topics relevant to IJSO level preparation.

1. Mechanics

Kinematics

For all equations, the acceleration is constant.

$$s = v_0 t + \frac{1}{2}at^2$$
$$v_f = v_0 + at$$
$$v_f^2 = v_0^2 + 2as$$
$$v_{avg} = \frac{v_f + v_0}{2}$$

Newton's laws of motion

F = force, a = acceleration	$\mu = friction coefficient$
Newton's 2 nd law	: F <mark>= ma</mark>
Weight	W = mg
Static friction	$ f_s \leq \mu_s N$
Kinetic friction	$: f_k = \mu_k N$

Work, Energy, and Power

Work	$:W = Fd \cos\theta$
Kinetic Energy	$:KE = \frac{1}{2}mv^2$
Potential energy	:PE = mgh
Conservation of energy	: initial energy = final energy
Power	$:P = \frac{W}{t}$
Power	:P = Fv

Momentum and Collisions

MOMENTUM IS CONSERVED UNLESS AN EXTERNAL NET FORCE IS ACTING ON THE OBJECT!!!

Linear Momentum: p = mvImpulse: $J = F\Delta t = \Delta p$

Rotational Motion

Angular displacement	$: \theta = \omega_0 t + \frac{1}{2} \alpha t^2$
Angular velocity	$:\omega = \omega_0 + \alpha t$
Rotational Kinetic Energy	$:KE_{rot} = \frac{1}{2}I\omega^2$
Torque	$: \tau = rF sin\theta$
Newton's 2 nd law for rotation	$1 : \tau = I\alpha$
Angular Momentum	$L = I\omega$
Torque	$: \tau = \frac{dL}{dt}$
	IC CONCEPTION INTERCO

ANGULAR MOMENTUM IS CONSERVED UNLESS AN EXTERNAL NET FORCE IS ACTING ON THE OBJECT!!!

Circular Motion

Centripetal Force	$:F_c=m\frac{v^2}{r}$
Centripetal Acceleration	$:a_c=\frac{v^2}{r}$

Gravitation

Newton's law of Gravitation	: F	$= \frac{GMm}{r^2}$
Gravitational field	: g	$= \frac{GM}{r^2}$
Gravitational PE	: U	$= -\frac{GMm}{r}$
Orbital velocity	: V	$=\sqrt{\frac{GM}{r}}$

Escape Velocity		: V _e	$=\sqrt{\frac{2GM}{R}}$
	-	 	

where, R represents the radius of the celestial body.

Fluid Mechanics

Density Pressure Hydrostatic Pressure Buoyant Force Equation of Continuity $: \rho = \frac{M}{V}$ $: P = \frac{F}{A}$ $: P = P_0 + \rho g h$ where, P_0 = atmospheric $: F_b = \rho V g$ $: A_1 V_1 = A_2 V_2$ Bernoulli's Equation $: P + \frac{1}{2}\rho v^2 + \rho g h = constant$

2. Waves and Oscillations

Hooke's Law

$$F = -kx$$

In simple harmonic motion (SMH):

• Displacement	$x = A \cos(\omega t + \phi)$
• Velocity	$: v = A\omega \sin(\omega t + \phi)$
• Acceleration	$: v = A\omega^2 \cos(\omega t + \phi)$
• Angular frequency	$:\omega = \sqrt{\frac{k}{m}}$
• Period	$:T = 2\pi \sqrt{\frac{m}{k}}$
Wave speed	$: v = f\lambda$
Doppler Effect	$: v = f\lambda$: $f' = \frac{v \pm v_o}{v \pm v_s}$

3. Optics

Snell's Law $: n_1 sin \theta_1 = n_2 sin \theta_2$

BE CAREFUL TO USE A PROPER SIGN CONVENTION!!

Mirror Equation	$:\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}$
Lens Equation	$:\frac{1}{f} = \frac{1}{d_i} - \frac{1}{d_o}$
Magnification	$: M = \left \frac{h_i}{h_o} \right = \left \frac{d_i}{d_o} \right $
Lens Maker's Formula	$:\frac{1}{f} = (\mu - 1)(\frac{1}{R_1} - \frac{1}{R_2})$
	~

where μ is the refractive index of the material.

4. Thermodynamics

Thermal Expansion	$\Delta L = \alpha L_0 \Delta T$
Heat Transfer	$: \Delta Q = m c \Delta T$
Change in State	$\Delta Q = mL$
First law of Thermodynan	nics $: \Delta U = \Delta Q - \Delta W$
Universal gas law	$: \frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$
Ideal Gas law	: PV = nRT
Work done by gas	$:W = p\Delta V$

5. Electricity and Magnetism

Ohm's Law	:V = IR
Resistance	$:R = \rho \frac{L}{A}$
Power	$:P = VI = I^2R = \frac{V^2}{R}$
Capacitance	$:C = \frac{Q}{V}$
Capacitance	$:C = \frac{\epsilon_0 A}{d}$
Energy stored in a Capacitor	$: U = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$
Magnetic Force for a Particle	$: F = qvB sin\theta$
Magnetic Force in a Current	$: F = BIL sin\theta$

6. Modern Physics

Energy of a Photon	:E = hf
Photoelectric Effect	$:E = hf - \phi$
De Broglie Wavelength	$:\lambda = \frac{h}{p} = \frac{h}{mv}$
Mass-Energy equivalence	$:E = mc^2$